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ABSTRACT
Introduction. Photodynamic therapy (PDT) is a clinically approved therapeutic procedure that exerts selective cytotoxic activ-
ity toward malignant cells.
Aim. Our goal is to present the PDT procedure which involves administration of a photosensitizing agent followed by irradia-
tion at a wavelength corresponding to the absorbance band of the photosensitizer and energy transfer to ground state oxygen 
to generate cytotoxic singlet oxygen
Material and methods. Analysis of literature.
Results. In this paper we described the basics of PDT and lifetime of singlet oxygen in different media. 
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Introduction
Singlet oxygen (1O2) is a highly reactive oxygen spe-
cies (ROS) and is the predominant cytotoxic agent pro-
duced during photodynamic therapy (PDT).1 Oxygen in 
the lowest excited electronic state is a reactive interme-
diate in many chemical processes.2 In PDT, we can dis-
tinguish several main elements that must be properly 
selected to make the therapy effective. First, you need a 
suitable photosensitizing (PS) drug that is given to the 
patient that, after delivery, accumulates in cells of malig-
nant tissue. The photosensitizer and the applied light in 
themselves cannot be toxic. The next element is expos-
ing the area to light. The ntensity and duration of light 

pulses are pre-determined.3 The luminescence emitted 
by 1O2 during PDT is very weak, therefore the detec-
tion of this signal requires advanced measurement tech-
niques and very sensitive devices. Measurement of the 
weak near infrared luminescence of 1O2 is possible in 
cells in vitro and tissues in vivo.4 This paper describes 
the principle of photodynamic therapy, the principles of 
choice of light sources used, photosensitizers and exam-
ples of singlet oxygen measurement methods.

Light sources in PDT
Red light (650 nm - 800 nm) for most tissues has the 
ability to penetrate several mm.5 In the case of pho-
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todynamic therapy, wavelengths in this range are the 
most commonly chosen.6 The exact excitation wave-
length must be properly tuned to match the absorption 
range of the PS. The use of UV light is also applicable 
due to the greater absorption of some PS in this wave-
length range, however, this range is outside the ther-
apeutic window and has defects such as endogenous 
stimulation of the PS, as shown by studies conducted 
by Baier et al. 2006.5 Short wavelength visible light pen-
etrates tissue to a very small extent compared to red 
and infrared light, which is why in each case we cannot 
use any PS and any light source. The sources of light 
in PDT most often diode lasers due to their small size, 
price, exposure time and ease of installation.7,8 Very of-
ten for solid tumors, PDT is performed using inter-
stitial fiberoptic light sources illuminated with a light 
from a single laser.9 For many skin lesions, non-laser 
light sources such as filtered lamps or more recently, 
light emitting diodes 10 are used. Regardless of which 
light source is used, the light field must be uniform to 
accurately calculate the dose.

Photosensitizers and synthetic dyes
Photosensitizers are an essential element in PDT. Most 
of them have a structure similar to that contained in 
the protoporphyrin prosthetic group. PSs have differ-
ent absorption ranges that depends on their exact struc-
ture.11-15 The ideal PS should have a strong absorption 
peak in the spectral range from 650 nm to 800 nm. This 
is because the absorption of photons with a wavelength 
> 800 nm is unable to provide sufficient energy for con-
version 3O2 to 1O2.

16 Another required feature that an 
ideal PS should have is a lack of „dark” toxicity and 
rapid clearance from the body.17 PSs are usually hydro-
phobic compounds that diffuse into cells quickly. The 
lifetime of 1O2 is very short, as shown in Table 1. Because 
of the short lifetime of singlet oxygen, the distribution 
of 1O2 in cells is limited to ca. 55 nm.18 

As has been said before, the absorption of a photon 
of light having the appropriate energy and wavelength 
leads to the excitation of a PS electron to an orbital with 
higher energy. Then, with the appropriate energy trans-
fer, ground state oxygen is converted to singlet oxygen. 
In Figure 1, the general principle of photodynamic ther-
apy is schematically presented.

Table 1. Lifetime of singlet oxygen in different media

References Applied light Dye Photosensitizer Media 1O2 lifetime

Schlothauer J.et al.11 670 nm Trypan blue Tetra (p-sulfophenyl) porphyrin
(TPPS)

cell suspensions
(intracellular) 0.5 – 1.0 µs

Jiménez-Banzo A. 
et al.12 532 nm

3-[4,5-
dimethylthi-

azol-2-yl]-2,5-di-
phenyltetrazolium 

bromide (MTT)

5,10,15,20-tetrakis(N-methyl-4-pyr-
idyl)-21H,23Hporphine

(TMPyP) cells
(Foreskin cells, 

ATCC CRL-1635)

1.7 µs

5,10,15,20-tetrakis-(4-sulfonatophe-
nyl)-

21H,23H-porphine (TPPS)
1.5 µs

Hatz S. et al.13 420 nm Rh123
5,10,15,20-tetrakis(N-methyl-4-pyr-

idyl)-21H,23Hporphine
(TMPyP)

HeLa cells in H2O ≈ 3.2 µs

HeLa cells in D2O ≈ 68 µs

Niedre M. et al.14 630 – 670 nm - AlS4Pc suspensions of 
leukemia cells ≈ 0.6 µs

Oelckers S. et al.15 675 nm - pheophorbide-a (PHEO) red cell ghost  
suspensions 35 – 100 µs

Fig. 1. Schematic of PDT treatment of a tumor
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gion 540-570 nm.21 Another example of synthetic dyes 
are Methylene Blue (MB) and Toluidine Blue (TB). Both 
of these dyes are characterized by their photobacteri-
cidal efficacy. TB exhibits a greater bactericidal activi-
ty than MB. The absorption maximum for these dyes is 
660 nm and 630 nm respectively.22.23 In this group there 
are also dyes that are based on the 4,4-difluoro-4-bo-
ra-3a, 4a-diaza-s-indacene (BODIPY) core. They have 
properties desirable in PDT such as high extinction 
coefficients, environment insensitivity, and resistance 
to photobleaching.24,25 They have heavy halogen atoms 
in the pyrrole rings. Examples of such dyes are, for ex-
ample, Zinc (II) -dipicolylamine di-iodo-BODIPY or 
DIMPy-BODIPY. The synthetic dyes group also in-
cludes transition metal compounds and phenalenones.16 
There are also natural products that can act as photosen-
sitizers. These types of PSs are mostly of plant origin. An 
example of such a PS is, for example, Hypercyol with an 
absorption maximum at 600 nm. Hypericin is a hydro-
phobic molecule, which means that it requires a formu-
lation in a drug delivery vehicle.26, 27 Hypocrellins A and 
B belong to the PSs of natural origin, along with cur-
cumin and riboflavin used as antimicrobial PS.29,30

Detection equipment
Different methods of measurement are used to detect 
1O2 luminescence. The main detection methods are an-

The largest group of PSs that are used in PDT in-
clude tetrapyrrole structures. In the case of this group 
of photosensitizers, singlet oxygen in most cases is pro-
duced via a type II mechanism that has been accurate-
ly described by Foote.19 In this process, energy from 
triplet excited state (T1) is directly transferred to 3O2 
forming 1O2. Only when sensitizer is in the same trip-
let state multiplicity as ground state oxygen can ener-
gy transfer to 3O2 occur.19 Type I and type II processes 
occur simultaneously, however, the type II mechanism 
is the dominant process in photodynamic therapy and 
is catalytic. The tetrapyrrole structures that play an im-
portant role in PDT also include chlorins, bacteriochlo-
rins, and phthalocyanines.20 One of the most important 
tetrapyrrole compounds used as a PS in PDT are, in-
ter alia, ALA-induced protoporphyrin IX (Phorphyrin); 
5,10,15,20-Tetrakis (1-methylpyridinium-4-yl) porphy-
rin tosylate; Monoaspartyl chlorin (e6), talaporphin so-
dium; HPPH (Chlorin); Chloroaluminium sulfonated 
phthalocyanine (CASP) (Phthalocyanine) or Phthalocy-
anine RLP068.16 Haematoporphyrin derivative (HpD) 
and Photofrin were among the first PSs used in PDT 
and are still widely used.17

Another group of PSs is synthetic dyes. An exam-
ple of such a dye used in PDT is Rose Bengal (RB). 
RB is a photoactive dye that efficiently generates sin-
glet oxygen. RB has a maximum absorption in the re-

Fig. 2. An optical excitation and detection system scheme for measurement singlet oxygen lifetime; a) laser system (light 
source); b) bandpass filter centered at the excitation wavelength; c) lens used to focus light onto the sample; d) cuvette with a 
sample (made of quartz); e) and g) long pass filters to remove unwanted scattered excitation light and fluorescence from the 
sample (typical 1000 nm and 800 nm); f ) lens to collimate light from the sample; h) bandpass filters (1270 nm corresponds 
to the peak of the 1O2 luminescence spectrum; typically 1200 nm and 1330 nm filters which lie outside the 1O2 band used to 
determine the background fluorescence); i) lens used to focus light onto the detector window; j) detector allows extremely 
sensitive detection in the 1200 - 1330 nm ranges.



231Methods of singlet oxygen generation and detection for understanding photodynamic processes

alogue detectors, which are usually based on semicon-
ductor diodes and photon counting techniques using 
near-infrared photomultipliers (NIR-PMT). Detection 
of singlet oxygen luminescence (around 1270 nm) is 
very difficult due to the very weak signal caused by the 
low quantum yield of the transition.31 Cryogenic germa-
nium diodes were used often to detect singlet oxygen 
luminescence, however, it is even more important to 
provide quantitative information, even in water where 
1O2 lifetime is 3.8 × 10-6 s. 32  To improve the sensitivity 
of measurements using semiconductor detectors, a dif-
ferentiation technique is used. The use of two photodi-
odes enabled simultaneous measurement of the sample 
and the background, giving a signal as a difference, as 
shown in studies carried out by Kiryu et al. in 1999.32 
Currently, one of the most accurate methods of singlet 
oxygen detection is measurement using near infrared 
photomultipliers whose sensitivity in the 1270 nm re-
gion is almost an order of magnitude greater than that 
of Ge diodes (germanium).6 The experimental setup 
for the lifetime of singlet oxygen using NIR detector is 
shown in Figure 2.

In vitro measurements of singlet oxygen lumines-
cence require the use of not only sensitive detectors, but 
also a range of optical elements such as lenses, optical 
filters and cuvettes. Lenses are used for focusing light 
onto the sample and collimating light from the sample. 
Optical filters are used, among others, to remove un-
wanted scattered excitation light and fluorescence from 
the sample. When testing near-infrared luminescence 
emission from singlet oxygen using optical detectors, it 
is required that the detector be characterized by high 
sensitivity with a low signal-to-noise ratio. In addition, 
the signal obtained requires careful analysis to separate 
the true 1O2 signal from scattered light and from phos-
phorescence and delayed fluorescence emissions from 
other molecules.33 Due to its high reactivity, 1O2 is char-
acterized by having the shortest lifetime in the aquatic 
environment of all the reactive oxygen species (ROS).34 
For this reason, designing sensors to detect it is one 
of the most difficult tasks. Researchers are increasing-
ly working on a singlet oxygen detection system based 
on a photomultiplier, which uses optical fibers to direct 
and collect signals directly from the PDT site.35,36,37 The 
power of the signal received in this way is much smaller 
compared to the configuration of the free NIR space of 
the detector.36 However, the use of a fiber optic enables, 
for example, the provision of a suitable dose of PDT by 
collecting signals through a tip placed directly in the tis-
sue of the patient (interstitial). Recently, many research-
ers have proposed detectors based on superconducting 
single-photon detectors (SNSPDS) working at cryogen-
ic temperatures.36 However, this technique has disad-
vantages such as high cost, complexity and size.

Conclusions
PDT has the potential to meet many currently unmet 
medical needs in cancer treatment. The ability to detect 
singlet oxygen luminescence is critical in any prediction 
of appropriate dosimetry.
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